If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3t^2-324=0
a = 3; b = 0; c = -324;
Δ = b2-4ac
Δ = 02-4·3·(-324)
Δ = 3888
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3888}=\sqrt{1296*3}=\sqrt{1296}*\sqrt{3}=36\sqrt{3}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-36\sqrt{3}}{2*3}=\frac{0-36\sqrt{3}}{6} =-\frac{36\sqrt{3}}{6} =-6\sqrt{3} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+36\sqrt{3}}{2*3}=\frac{0+36\sqrt{3}}{6} =\frac{36\sqrt{3}}{6} =6\sqrt{3} $
| 34-(26*x)=18 | | 16x+(19/15)-15x=(19/30) | | 27+m÷4=3+4 | | 34-24*x=18 | | 2(3b–4)=8b-11 | | 4n+6+2n=2(n+3) | | (x+17)/2=51/3 | | 42-(12*6)=x | | (6x+1)/7-(2x-7)/3=0 | | 17=2x+15 | | 8=24-x | | 16*16*16=8*8*m | | 7m-21=39 | | 2a^2+4a=3 | | 17={a}-3 | | 6(3t+12)=2t(3t+12) | | 27+m/4=3+4 | | y=29-3(3) | | 3(1+2x)=5x+8 | | 6+5/6x=5x-82/3 | | -12=2+2v+2v | | 2m-3(-2m+6)=4m-6 | | 224=151-x | | 3x-3/x+3-3-3x/3-x=6-3x/x-3 | | 5x^2+11=-23 | | 24+24n-10n=-6n+24 | | .08x+.07x=1000 | | 5x^+11=-23 | | -9-6=x+2(3x+3) | | 6x+2=x+14 | | 11x-2=16+7x | | (7x+40)=(3x+112) |